Chapter 1

The Nonlinear Optical Susceptibility

1.1. Introduction to Nonlinear Optics

Nonlinear optics is the study of phenomena that occur as a consequence of
the modification of the optical properties of a material system by the presence
of light. Typically, only laser light is sufficiently intense to modify the optical
properties of a material system. In fact, the beginning of the field of nonlinear
optics is often taken to be the discovery of second-harmonic generation by
Franken et al. in 1961, shortly after the demonstration of the first working
laser by Maiman in 1960. Nonlinear optical phenomena are “nonlinear” in the
sense that they occur when the response of a material system to an applied
optical field depends in a nonlinear manner upon the strength of the optical
field. For example, second-harmonic generation occurs as a result of the part of
the atomic response that depends quadratically on the strength of the applied
optical field. Consequently, the intensity of the light generated at the second-
harmonic frequency tends to increase as the square of the intensity of the
applied laser light.

In order to describe more precisely what we mean by an optical nonlinearity,
let us consider how the dipole moment per unit volume, or polarization P(t),
of a material system depends upon the strength £(z) of the applied optical
field.* In the case of conventional (i.e., linear) optics, the induced polarization
depends linearly upon the electric field strength in a manner that can often be

* Throughout the text, we use the tilde to denote a quantity that varies rapidly in time. Constant
quantities, slowly varying quantities, and Fourier amplitudes are written without the tilde. See, for
example, Eq. (1.2.1).
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described by the relationship
Paty=xVE®), (1.1.1)

where the constant of proportionality x (V) is known as the linear susceptibility.
In nonlinear optics, the optical response can often be described by generalizing
Eq. (1.1.1) by expressing the polarization P(r) as a power series in the field
strength E(@r) as

B(t)=xVE@®) + xPE () + xVE @) + - -
(1.1.2)

=(2)

=P+ %0+ P%0) + ...

The quantities x ® and x ® are known as the second- and third-order nonlinear
optical susceptibilities, respectively. For simplicity, we have taken the fields
P(t) and E(1) to be scalar quantities in writing Egs. (1.1.1) and (1.1.2). In
Section 1.3 we show how to treat the vector nature of the fields; in such a case
xD becomes a second-rank tensor, x ® becomes a third-rank tensor, etc. In
writing Eqgs. (1.1.1) and (1.1.2) in the form shown, we have also assumed that
the polarization at time ¢ depends only on the instantaneous value of the electric
field strength. The assumption that the medium responds instantaneously also
implies (through the Kramers—Kronig relations)* that the medium must be
lossless and dispersionless. We shall also see in Section 1.3 how to generalize
these equations for the case of a medium with dispersion and loss. In general,
the nonlinear susceptibilities depend on the frequencies of the applied fields,
but under our present assumption of instantaneous response we take them to
be constants.

We shall refer to P (t) = x @ E(#)? as the second-order nonlinear polar-
ization and to PP (1) = x®E(1)? as the third-order nonlinear polarization.
We shall see later in this section that the ?hysical processes that occur as a
result of the second-order polarization P are distinct from those that occur
as a result of the third-order polarization P?. In addition, we shall show in
Section 1.5 that second-order nonlinear optical interactions can occur only
in noncentrosymmetric crystals, that is, in crystals that do not display inver-
sion symmetry. Since liquids, gases, amorphous solids (such as glass), and
even many crystals do display inversion symmetry, x * vanishes identically for
such media, and consequently they cannot produce second-order nonlinear op-
tical interactions. On the other hand, third-order nonlinear optical interactions

* See, for example, Loudon (1973) Chapter 4 or the discussion in Section 1.7 of the present book
for a discussion of the Kramers—Kronig relations.
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(i.e., those described by a x® susceptibility) can occur both for centrosym-
metric and noncentrosymmetric media.

We shall see in later sections of this book how to calculate the values of the
nonlinear susceptibilities for various physical mechanisms that lead to optical
nonlinearities. For the present, we shall make a simple order-of-magnitude
estimate of the size of these quantities for the common case in which the non-
linearity is electronic in origin (see, for instance, Armstrong et al., 1962). One
might expect that the lowest order correction term P would be comparable to
the linear response P" when the amplitude of the applied field E is of the or-
der of the characteristic atomic electric ﬁeld strength Ey = e/a; a2, where —e is
the charge of the electron and ag = h%/me? is the Bohr radius of the hydrogen
atom (here % is Planck’s constant divided by 27, and m is the mass of the elec-
tron). Numerically, we find that E,, = 2 x 107 statvolt/cm.* We thus expect
that under conditions of nonresonant excitation the second-order susceptibility
x @ will be of the order of x (V'/E,,. For condensed matter x ! is of the order
of unity, and we hence expect that x ® will be of the order of 1/E,, or that

cm
x® ~5%x1078 =5x10"%cm?/erg)/? =5 x 10 esu.  (1.1.3)
statvolt
Similarly, we expect x ® to be of the order of xV/E2, which for condensed
matter is of the order of

cm?

x® ~3x107 =3 x 107Pcm3/erg =3 x 10" P esu.  (1.1.4)

statvolt?

These predictions are in fact quite accurate, as one can see by comparing these
values with actual measured values of x ® (see for instance Table 1.5.3) and
x® (see for instance Table 4.3.1). For certain purposes, it is useful to express
the second- and third-order susceptibilities in terms of fundamental physical
constants. Noting that the number density N of condensed matter is of the
order of (ag) 3, we find that x® ~ a*/m2e’ and x® ~ 18 /m*e'°. See Boyd
(1999) for further details.

The most common procedure for describing nonlinear optical phenomena is
based on expressing the polarization P(t) in terms of the applied electric field
strength E(¢), as we have done in Eq. (1.1.2). The reason why the polarization
plays a key role in the description of nonlinear optical phenomena is that a

* Except where otherwise noted, we use the gaussian system of units in this book. Note that in the
scientific literature the units of an electrical quantity expressed in the gaussian system are often not
given explicitly, but rather are simply said to be stated in electrostatic units (esu). As an example, in
the present instance one would say that E = 2 x 107 esu. See also the discussion in the appendix to
this book on the conversion between the systems of units.
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time-varying polarization can act as the source of new components of the
electromagnetic field. For example, we shall see in Section 2.1 that the wave
equation in nonlinear optical media often has the form
vzi—fﬂ—i’fﬂ (1.1.5)
¢t a2 ¢t ot
where n is the usual linear refractive index and c is the speed of light in vacuum.
We can interpret this expression as an inhomogeneous wave equation in which
the polarization P™" associated with the nonlinear response drives the electric
field E. This equation expresses the fact that, whenever 92PN /9t is nonzero,
charges are being accelerated, and according to Larmor’s theorem from elec-
tromagnetism accelerated charges generate electromagnetic radiation.

It should be noted that the power series expansion expressed by Eq. (1.1.2)
need not necessarily converge. In such circumstances the relationship between
the material response and the applied electric field amplitude must be expressed
using different procedures. One such example is that under resonant excitation
of an atomic system, an appreciable fraction of the atoms can be removed
from the ground state. Saturation effects of this sort can be described by proce-
dures developed in Chapter 6. Even under nonresonant conditions, Eq. (1.1.2)
loses its validity if the applied laser field strength becomes comparable to the
characteristic atomic field strength E,;, because of strong photoionization that
can occur under these conditions. For future reference, we note that the laser
intensity associated with a peak field strength of Ej is given by

Ia = %Ei =5 x 102 erg/cm?s = 5 x 10'0 W/em?.  (1.1.6)

We shall see in later sections of this book how nonlinear optical processes
display qualitatively distinct features when excited by such super-intense fields.

1.2. Descriptions of Nonlinear Optical Interactions

In the present section, we present brief qualitative descriptions of a number of
nonlinear optical interactions. In addition, for those processes that can occur
in a lossless medium, we indicate how they can be described in terms of
the nonlinear contributions to the polarization described by Eq. (1.1.2).* Our
motivation is to provide the reader with an indication of the variety of nonlinear
optical phenomena that can occur. These interactions are described in greater
detail in later sections of this book. In this section we also introduce some
notational conventions and some of the basic concepts of nonlinear optics.

* Recall that Eq. (1.1.2) is valid only for a medium that is lossless and dispersionless.
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Ficure 1.2.1 (a) Geometry of second-harmonic generation. (b) Energy-level dia-
gram describing second-harmonic generation.

Second-Harmonic Generation

As an example of a nonlinear optical interaction, let us consider the process of
second-harmonic generation, which is illustrated schematically in Fig. 1.2.1.
Here a laser beam whose electric field strength is represented as

E(t) = Ee7'“ 4 c.c. (1.2.1)

is incident upon a crystal for which the second-order susceptibility x @ is
nonzero. The nonlinear polarization that is created in such a crystal is given

according to Eq. (1.1.2) as ﬁ(z)(t) = X(Z)Ez(t) or as
BP) = 24 PEE" + (xPE2e ™™ +c.c). (12.2)

We see that the second-order polarization consists of a contribution at zero
frequency (the first term) and a contribution at frequency 2w (the second term).
According to the driven wave equation (1.1.5), this latter contribution can
lead to the generation of radiation at the second-harmonic frequency. Note
that the first contribution in Eq. (1.2.2) does not lead to the generation of
electromagnetic radiation (because its second time derivative vanishes); it leads
to a process known as optical rectification in which a static electric field is
created within the nonlinear crystal.

Under proper experimental conditions, the process of second-harmonic gen-
eration can be so efficient that nearly all of the power in the incident radiation
at frequency w is converted to radiation at the second-harmonic frequency 2w.
One common use of second-harmonic generation is to convert the output of a
fixed-frequency laser to a different spectral region. For example, the Nd: YAG
laser operates in the near infrared at a wavelength of 1.06 wm. Second-harmonic
generation is routinely used to convert the wavelength of the radiation to
0.53 um, in the middle of the visible spectrum.
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Second-harmonic generation can be visualized by considering the interac-
tion in terms of the exchange of photons between the various frequency com-
ponents of the field. According to this picture, which is illustrated in part (b) of
Fig. 1.2.1, two photons of frequency w are destroyed and a photon of frequency
2w is simultaneously created in a single quantum-mechanical process. The
solid line in the figure represents the atomic ground state, and the dashed lines
represent what are known as virtual levels. These levels are not energy eigen-
levels of the free atom, but rather represent the combined energy of one of the
energy eigenstates of the atom and of one or more photons of the radiation field.

The theory of second-harmonic generation is developed more fully in
Section 2.6.

Sum- and Difference-Frequency Generation

Let us next consider the circumstance in which the optical field incident upon
a nonlinear optical medium characterized by a nonlinear susceptibility x
consists of two distinct frequency components, which we represent in the form

E@t) = Eje™' " 4+ Eye @ 4 coc. (1.2.3)

Then, assuming as in Eq. (1.1.2) that the second-order contribution to the
nonlinear polarization is of the form

PPy = xPE@), (1.2.4)
we find that the nonlinear polarization is given by

ﬁ(z)(t) — X(z)[Elze_ziw,z + E%e_ziwz' + 2E1E28—i(wl+wz)t

. (1.2.5)
+2EEje” @)y cc.] +2xP[EE} + E2E}].
It is convenient to express this result using the notation
BP0 =Y P(wne ™, (1.2.6)
n

where the summation extends over positive and negative frequencies w,. The
complex amplitudes of the various frequency components of the nonlinear
polarization are hence given by

PQw)) = xPE? (SHG),
PQw;) = xPE? (SHO),
P(w) +wy) =2xPE|E,  (SFG), (1.2.7)
P(w) — w) = 2P E\E5 (DFG),
P(0) = 2x®(E\E} + E2E3)  (OR).
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Here we have labeled each expression by the name of the physical process
that it describes, such as second-harmonic generation (SHG), sum-frequency
generation (SFG), difference-frequency generation (DFG), and optical rectifi-
cation (OR). Note that, in accordance with our complex notation, there is also
a response at the negative of each of the nonzero frequencies given above:
P(—2w;) = xPE?, P(=2wp) = xVE3?,
(1.2.8)
P(—wi —wp) =2XPEJE;, P(w,—w1) =2x?PEE}.

However, since each of these quantities is simply the complex conjugate of
one of the quantities given in Eq. (1.2.7), it is not necessary to take explicit
account of both the positive and negative frequency components.™

We see from Eq. (1.2.7) that four different nonzero frequency components
are present in the nonlinear polarization. However, typically no more than one
of these frequency components will be present with any appreciable intensity
in the radiation generated by the nonlinear optical interaction. The reason for
this behavior is that the nonlinear polarization can efficiently produce an output
signal only if a certain phase-matching condition (which is discussed in detail in
Section 2.7) is satisfied, and usually this condition cannot be satisfied for more
than one frequency component of the nonlinear polarization. Operationally,
one often chooses which frequency component will be radiated by properly
selecting the polarization of the input radiation and orientation of the nonlinear
crystal.

Sum-Frequency Generation

Let us now consider the process of sum-frequency generation, which is illus-
trated in Fig. 1.2.2. According to Eq. (1.2.7), the complex amplitude of the

* Not all workers in nonlinear optics use our convention that the fields and polarizations are given

by Eqgs. (1.2.3) and (1.2.6). Another common convention is to define the field amplitudes according to
E(t) = Y(Ele™™" + Eje™ +c.c),
~2 .
P’(1) = 1Y Plwye,
n

where in the second expression the summation extends over all positive and negative frequencies. Using

this convention, one finds that
P'Qwy) = 3xPEY, P'Qw) = 5xPE7,
P'(w1 + w2) = x P E{E}, P'(w) — wp) = x P E{EY,
P'(0) = x®(E|E* + E}E).

Note that these expressions differ from Egs. (1.2.7) by factors of 1/2.
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FiGUre 1.2.2 Sum-frequency generation. (a) Geometry of the interaction. (b) Energy-
level description.

nonlinear polarization describing this process is given by the expression
P(wy + ) =2xPEE;. (1.2.9)

In many ways the process of sum-frequency generation is analogous to that of
second-harmonic generation, except that in sum-frequency generation the two
input waves are at different frequencies. One application of sum-frequency
generation is to produce tunable radiation in the ultraviolet spectral region by
choosing one of the input waves to be the output of a fixed-frequency visible
laser and the other to be the output of a frequency-tunable visible laser. The
theory of sum-frequency generation is developed more fully in Sections 2.2
and 2.4.

Difference-Frequency Generation

The process of difference-frequency generation is described by a nonlinear
polarization of the form

P(w) — wy) =2xPE\E} (1.2.10)

and is illustrated in Fig. 1.2.3. Here the frequency of the generated wave is
the difference of those of the applied fields. Difference-frequency generation
can be used to produce tunable infrared radiation by mixing the output of a
frequency-tunable visible laser with that of a fixed-frequency visible laser.
Superficially, difference-frequency generation and sum-frequency genera-
tion appear to be very similar processes. However, an important difference
between the two processes can be deduced from the description of difference-
frequency generation in terms of a photon energy-level diagram (part (b) of
Fig. 1.2.3). We see that conservation of energy requires that for every photon
that is created at the difference frequency w3 = w; — w,, a photon at the
higher input frequency (w; ) must be destroyed and a photon at the lower input
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Ficure 1.2.3 Difference-frequency generation. (a) Geometry of the interaction.
(b) Energy-level description.

frequency (w,) must be created. Thus, the lower-frequency input field is am-
plified by the process of difference-frequency generation. For this reason, the
process of difference-frequency generation is also known as optical parametric
amplification. According to the photon energy-level description of difference-
frequency generation, the atom first absorbs a photon of frequency w; and
jumps to the highest virtual level. This level decays by a two-photon emis-
sion process that is stimulated by the presence of the w, field, which is already
present. Two-photon emission can occur even if the w, field is not applied. The
generated fields in such a case are very much weaker, since they are created by
spontaneous two-photon emission from a virtual level. This process is known
as parametric fluorescence and has been observed experimentally (Harris et al.,
1967, Byer and Harris, 1968).

The theory of difference-frequency generation is developed more fully in
Section 2.5.

Optical Parametric Oscillation

We have just seen that in the process of difference-frequency generation the
presence of radiation at frequency w; or w3 can stimulate the emission of
additional photons at these frequencies. If the nonlinear crystal used in this
process is placed inside an optical resonator, as shown in Fig. 1.2.4, the w,

@, (signal)
— 2
0 =0,+0, 2"
(pump) —_—
@, (idler)

FiGURE 1.2.4 The optical parametric oscillator. The cavity end mirrors have high
reflectivities at frequencies w, and/or ws.
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and/or w3 fields can build up to large values. Such a device is known as an
optical parametric oscillator. Optical parametric oscillators are frequently used
atinfrared wavelengths, where other sources of tunable radiation are not readily
available. Such a device is tunable because any frequency w, that is smaller
than w; can satisfy the condition w, + w3 = w; for some frequency ws. In
practice, one controls the output frequency of an optical parametric oscillator
by adjusting the phase-matching condition, as discussed in Section 2.7. The
applied field frequency w, is often called the pump frequency, the desired
output frequency is called the signal frequency, and the other, unwanted, output
frequency is called the idler frequency.

Third-Order Polarization

We next consider the third-order contribution to the nonlinear polarization
5 (3) L) 3
PV @)= xYE@). (1.2.11)

For the general case in which the field £ (¢) is made up of several different
frequency components, the expression for P (¢) is very complicated. For
this reason, we first consider the simple case in which the applied field is
monochromatic and is given by

E(t) = &cos wt. (1.2.12)

Then, through use of the identity cos? wr = }’ cos 3wt + % cos wt, the nonlinear
polarization can be expressed as

PO = 1x®&% cos 3wt + 2 x D&% cos wt. (1.2.13)

The significance of each of the two terms in this expression is described briefly
below.

Third-Harmonic Generation

The first term in Eq. (1.2.13) describes a response at frequency 3w that is
due to an applied field at frequency w. This term leads to the process of third-
harmonic generation, which is illustrated in Fig. 1.2.5. According to the photon
description of this process, shown in part (b) of the figure, three photons of
frequency w are destroyed and one photon of frequency 3w is created in each
elementary event.
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FiGure 1.2.5 Third-harmonic generation. (a) Geometry of the interaction. (b)
Energy-level description.

Intensity-Dependent Refractive Index

The second term in Eq. (1.2.13) describes a nonlinear contribution to the polar-
ization at the frequency of the incident field; this term hence leads to a nonlinear
contribution to the refractive index experienced by a wave at frequency w. We
shall see in Section 4.1 that the refractive index in the presence of this type of
nonlinearity can be represented as

n=ng+nyl (1.2.14a)
where ng is the usual (i.e., linear or low-intensity) refractive index, where
1272
ny = ——x® (1.2.14b)
ngc

is an optical constant that characterizes the strength of the optical nonlinearity,
and where I = (noc/8m)&? is the intensity of the incident wave.

Self-Focusing. One of the processes that can occur as a result of the
intensity-dependent refractive index is self-focusing, which is illustrated in
Fig. 1.2.6. This process can occur when a beam of light having a nonuniform
transverse intensity distribution propagates through a material in which n; is
positive. Under these conditions, the material effectively acts as a positive
lens, which causes the rays to curve toward each other. This process is of great
practical importance because the intensity at the focal spot of the self-focused
beam is usually sufficiently large to lead to optical damage of the material. The
process of self-focusing is described in greater detail in Section 7.1.

Y

—> n2>0

FiGure 1.2.6 Self-focusing of light.



12 1 ¢ The Nonlinear Optical Susceptibility

Third-Order Polarization (General Case)
Let us next examine the form of the nonlinear polarization
PP (1) = xVE@)? (1.2.152)
induced by an applied field that consists of three frequency components:
E(t) = E;e ™" + Eye ' + Eze ' +c.c. (1.2.15b)

When we calculate E (1), we find that the resulting expression contains 44 dif-
ferent frequency components, if we consider positive and negative frequencies
to be distinct. Explicitly, these frequencies are

wy, W2, @3, 3wy, 3wz, 3w, (W) + w2 + W3), (W1 + W2 — w3),
(w1 + w3 — @), (W2 + @3 — w1), Qo £ @), Qo1 £ w3), CQw, £ wy),
Qan £ w3), 2wz £ w1), Qws + w2),
and the negative of each. Again representing the nonlinear polarization as
PO =Y Plwge, (1.2.16)

we can write the complex amplitudes of the nonlinear polarization for the
positive frequencies as

P(w)) = x¥(BE|E} + 6E,E} + 6E3E})E),
P(wy) = x®(6E\E} + 3E,E; + 6E3E}) E,
P(ws) = x®(6E\E} + 6E,E} + 3E5E})Es,
PBw) =xPE},  PQGw)=xYE},  PQGw)=x"Ej,
P(w; + wy + w3) = 6PV E\E2E3,  P(w) + @y ~— w3) = 6x E 1 EES,
P+ w3 — @) = 6xPE\E3E},  P(w 4 w3 — w1) = 6x P ELE3EY,

PQw, + wy) =3xPEIE,, PQuw; + w3) = 3xPE?E;,
PQw; + ) =3xVEZE,, PQw; + w3) =3xPE2E;,
PQw; + ) = 3x P ELE,, PQws + wy) =3xVEZE,,
PQw; — wy) =3xPEIE;, PQw; — w3) = 3xPEIES,
PQuw; — w)) =3xV EZE}, PQw; — w3) = 3xPEZES,
PQuws — wy) = 3xVEIE}, PQws — wy) =3xPEES;

(1.2.17)
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Ficure 1.2.7 Two of the possible mixing processes described by Eq. (1.2.17) that
can occur when three input waves interact in a medium characterized by a x®
susceptibility.

We have displayed these expressions in complete detail because it is very
instructive to study their form. In each case the frequency argument of P
is equal to the sum of the frequencies associated with the field amplitudes
appearing on the right-hand side of the equation, if we adopt the convention
that a negative frequency is to be associated with a field amplitude that appears
as a complex conjugate. Also, the numerical factor (1, 3, or 6) that appears in
each term on the right-hand side of each equation is equal to the number of
distinct permutations of the field frequencies that contribute to that term.

Some of the nonlinear optical mixing processes described by Eq. (1.2.17)
are illustrated in Fig. 1.2.7.

Parametric versus Nonparametric Process

All of the processes described thus far in this chapter are examples of what
are known as parametric processes. The origin of this terminology is obscure,
but the word parametric has come to denote a process in which the initial and
final quantum-mechanical states of the system are identical. Consequently, in
a parametric process population can be removed from the ground state only
for those brief intervals of time when it resides in a virtual level. According
to the uncertainty principle, population can reside in a virtual level for a time
interval of the order of 71/ E, where S E is the energy difference between the
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virtual level and the nearest real level. Conversely, processes that do involve
the transfer of population from one real level to another are known as non-
parametric processes. The processes that we describe in the remainder of the
present section are all examples of nonparametric processes.

One difference between parametric and nonparametric processes is that para-
metric processes can always be described by a real susceptibility; conversely,
nonparametric processes are described by a complex susceptibility by means
of a procedure described in the following section, Section 1.3. Another differ-
ence is that photon energy is always conserved in a parametric process; photon
energy need not be conserved in a nonparametric process, because energy can
be transferred to or from the material medium. For this reason, photon en-
ergy level diagrams of the sort shown in Figs. 1.2.1, 1.2.2, 1.2.3, 1.2.5, and
1.2.7 to describe parametric processes play a less definitive role in describing
non-parametric processes.

As asimple example of the distinction between parametric and nonparamet-
ric processes, we consider the case of the usual (linear) index of refraction.
The real part of the refractive index is a consequence of parametric processes,
whereas its imaginary part is a consequence of nonparametric processes, since
the imaginary part of the refractive index describes the absorption of radiation,
which results from the transfer of population from the atomic ground state to
an excited state.

Saturable Absorption

One example of a nonparametric nonlinear optical process is saturable absorp-
tion. Many material systems have the property that their absorption coefficient
decreases when measured using high laser intensity. Often the dependence of
the measured absorption coefficient & on the intensity / of the incident laser
radiation is given by the expression™
o
o=,
141/

where o is the low-intensity absorption coefficient, and I; is a parameter
known as the saturation intensity.

(1.2.18)

Optical Bistability. One consequence of saturable absorption is optical bista-
bility. One way of forming a bistable optical device is to place a saturable
absorber inside a Fabry—Perot resonator, as illustrated in Fig. 1.2.8. As the

* This form is valid, for instance, for the case of homogeneous broadening of a simple atomic
transition.
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Ficure 1.2.8 Bistable optical device.

input intensity is increased, the field inside the cavity also increases, lowering
the absorption that the field experiences and thus increasing the field inten-
sity still further. If the intensity of the incident field is subsequently lowered,
the field inside the cavity tends to remain large because the absorption of the
material system has already been reduced. A plot of the input-versus-output
characteristics thus looks qualitatively like that shown in Fig. 1.2.9. Note that
over an appreciable range of input intensities more than one output intensity
is possible. The process of optical bistability is described in greater detail in
Section 7.3.

Two-Photon Absorption

In the process of two-photon absorption, which is illustrated in Fig. 1.2.10,
an atom makes a transition from its ground state to an excited state by the
simultaneous absorption of two laser photons. The absorption cross section o
describing this process increases linearly with laser intensity according to the
relation

oc=0?], (1.2.19)

where o @ is a coefficient that describes two-photon absorption. (Recall that
in conventional, linear optics the absorption cross section ¢ is a constant.)
Consequently, the atomic transition rate R due to two-photon absorption scales

out

Y

1

in

Ficure 1.2.9 Typical input-versus-output characteristics of a bistable optical device.
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FiGure 1.2.10 Two-photon absorption.

as the square of the laser intensity, since R = o I /hw, or as

a@r?
R = . (1.2.20)
hw
Two-photon absorption is a useful spectroscopic tool for determining the po-
sitions of energy levels that are not connected to the atomic ground state by a
one-photon transition. Two-photon absorption was first observed experimen-

tally by Kaiser and Garrett (1961).

Stimulated Raman Scattering

In stimulated Raman scattering, which is illustrated in Fig. 1.2.11, a photon of
frequency w is annihilated and a photon at the Stokes shifted frequency w; =
w—wy is created, leaving the molecule (or atom) in an excited state with energy
hw,. The excitation energy is referred to as w, because stimulated Raman
scattering was first studied in molecular systems, where hiw, corresponds to
a vibrational energy. The efficiency of this process can be quite large, with
often 10% or more of the power of the incident light being converted to the
Stokes frequency. In contrast, the efficiency of normal or spontaneous Raman
scattering is typically many orders of magnitude smaller. Stimulated Raman
scattering is described more fully in Chapter 9.

Other stimulated scattering processes such as stimulated Brillouin scattering
and stimulated Rayleigh scattering also occur and are described more fully in
Chapter 8.

(a) (b)

[0) Raman S v
medium

Ficure 1.2.11 Stimulated Raman scattering.



1.3.  Formal Definition of the Nonlinear Susceptibility 17
1.3. Formal Definition of the Nonlinear Susceptibility

Nonlinear optical interactions can be described in terms of the nonlinear po-
larization given by Eq. (1.1.2) only for a material system that is lossless and
dispersionless. In the present section, we consider the more general case of a
material with dispersion and/or loss. In this general case the nonlinear suscep-
tibility becomes a complex quantity relating the complex amplitudes of the
electric field and polarization.

We assume that we can represent the electric field vector of the optical wave
as the discrete sum of a number of frequency components as

Er,n) =) E.r0. (13.1)

The prime on the summation sign of Eq. (1.3.1) indicates that the summation
is to be taken over positive frequencies only. It is often convenient to represent
E, (r, t) as the sum of its positive- and negative-frequency parts as

E, = E;ﬂ + Efl—), (1.3.2)
where
E,(f) = E,e ' (1.3.3a)
and
E;—) = Eff)* = Ee'“n, (1.3.3b)

By requiring E() to be the complex conjugate of E() we are assured that the
quantity of E(r, 1) of Eq. (1.3.1) will be real, as it must be in order to represent
a physical field. It is also convenient to define the spatially slowly varying field
amplitude A, by means of the relation

E, = A, %", (1.3.4)

The total electric field of Eq. (1.3.1) can thus be represented in terms of these
field amplitudes by either of the expressions

Er, )= Z/Ene"'“’"’ +c.c.
i (1.3.5)
= Z,Ane(ik"'r"‘”"') +c.c.

On occasion, we shall express these field amplitudes using the alternative
notation

E,=E(w,) and A, = A(wy). (1.3.6)
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In terms of this new notation, the reality condition of Eq. (1.3.3b) becomes
E(—w,) = E(w,)* or A(-w,) = A(w,)*. (1.3.7)
Using this new notation, we can write the total field in the more compact form
E@r, 1) =) E@y)e ™

13.8
= Adwp)e e, 09

where the unprimed summation symbol denotes a summation over all frequen-
cies, both positive and negative.
Note that according to our definition of field amplitude, the field given by

E(r,t) = &cos(k -t — wr) (1.3.9)
is represented by the complex field amplitudes
E(o) = 1&e*T, E(-w) = i&e7k", (1.3.10)
or alternatively by the slowly varying amplitudes
Aw) =16  A(-0)=3é& (1.3.11)

In either representation, factors of 1/2 appear because the physical field ampli-
tude & has been divided equally between the positive- and negative-frequency
components.

Using a notation similar to that of Eq. (1.3.8), we can express the nonlinear
polarization as

P, 1) = Zp(w,,)e—"wn’, (13.12)

where, as before, the summation extends over all positive- and negative-
frequency components.

We now define the components of the second-order susceptibility tensor Xi(jzk)
(wp + wm, 0y, 0,) as the constants of proportionality relating the amplitude
of the nonlinear polarization to the product of field amplitudes according to

Pi@n +©n) = D D X1 (@n + O, @1y 0n) Ej(@n) Ex(@n).  (1.3.13)
ik (nm)

Here the indices ijk refer to the cartesian components of the fields. The no-
tation (nm) indicates that, in performing the summation over n and m, the
sum w, + w,, is to be held fixed, although w, and w,, are each allowed
to vary. Since the amplitude E(w,) is associated with the time dependence
exp(—iwyt), and the amplitude E (w,,) is associated with the time dependence
exp(—iwpt), their product E(w,)E (w,,) is associated with the time depen-
dence exp[—i(w, + wy)t]. Hence the product E(w,) E(w,,) does in fact lead
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to a contribution to the nonlinear polarization oscillating st frequency w, + @,
as the notation of Eq. (1.3.13) suggests. Following convention, we have writ-
ten x® as a function of three frequency arguments. This is technically un-
necessary in that the first argument is always the sum of the other two. To
emphasize this fact, the susceptibility x P(ws, wy, wy) is sometimes written
as x @ (ws; wy, wy) as a reminder that the first argument is different from the
other two; or it may be written symbolically as x @ (w3 = ws + wy).

Let us examine some of the consequences of the definition of the nonlinear
susceptibility as given by Eq. (1.3.13) by considering two simple examples.

1. Sum-frequency generation. We let the input field frequencies be w; and
w, and the sum frequency be ws, so that ws = w; 4+ w;. Then, by carrying
out the summation over w, and w,, in Eq. (1.3.13), we find that

Pi(ws) = Y [t (@s, w1, 02) E;(wr) Ex(w2)
Jjk
) (1.3.14)
+ X\t (@3, @2, 01) E (02) Ex (1)].

This expression can be simplified by making use of the intrinsic permuta-
tion symmetry of the nonlinear susceptibility (this symmetry is discussed
in more detail in Eq. (1.5.6) below), which requires that

Xl(jzk)(wm + Wy, O, W) = X,‘(kzj)(wm + @n, ©p, W), (1.3.15)

Through use of this relation, the expression for the nonlinear polarization
becomes
Pi(ws) =2 xin (s, w1, 0) Ej(w) Ex(wp),  (13.16)
Jk
and for the special case in which both input fields are polarized in the x
direction the polarization becomes

Pi(@3) = 2% 2 (3, 01, 02) Ex (1) Ex (@2). (13.17)

ixx
2. Second-harmonic generation. We take the input frequency as w; and the

generated frequency as w3 = 2w,;. If we again perform the summation
over field frequencies in Eq. (1.3.13), we obtain

Pi(w3) = Y xin(@s, o, o) Ej(@)Ex(w).  (1.3.18)
Jjk

Again assuming the special case of an input field polarization along the
x direction, this result becomes

Pi(@3) = x2 (w3, w1, w1) Ex(w;)*. (1.3.19)
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Note that a factor of two appears in Egs. (1.3.16) and (1.3.17), which
describe sum-frequency generation, but not in Egs. (1.3.18) and (1.3.19),
which describe second-harmonic generation. The fact that these expres-
sions remain different even as w, approaches w is at first sight surpris-
ing, but is a consequence of our convention that x,»(,»z,? (w3, w1, wr) must
approach Xi(jzk) (w3, w1, w1) as w; approaches w,. Note that the expressions
for P(2w,) and P (w; + w,) that apply for the case of a dispersionless non-
linear susceptibility (Eq. (1.2.7)) also differ by a factor of two. Moreover,
one should expect the nonlinear polarization produced by two distinct
fields to be larger than that produced by a single field (both of the same
amplitude, say), because the total light intensity is larger in the former case.

In general, the summation over field frequencies () (am)) in Eq. (1.3.13) can
be performed formally to obtain the result

Pi(wn + op) = DY X3 (@n + Omr 0n, o) Ej(@3) Ex(@y), (1.3.20)
jk

where D is known as the degeneracy factor and is equal to the number of
distinct permutations of the applied field frequencies w, and w,,.

The expression (1.3.13) defining the second-order susceptibility can readily
be generalized to higher-order interactions. In particular, the components of the
third-order susceptibility are defined as the coefficients relating the amplitudes
according to the expression

Pi(w, + wp, + wp) = Z Z X,'(j3k)1(a)0 + wp + Wiy Wy, Wp, Op)

JHL (mno) (1321)
X Ej (wo)Ek (wn)El (wm)

We can again perform the summation over m, n, and o to obtain the result

Pi(wo + wy + wp) = D ZX,'(;']C)I(C‘)O + Wp + Oy, Wo, O, W)
7Kl

X Ej (wo) Ex(wn) Ei (@),

(1.3.22)

where the degeneracy factor D represents the number of distinct permutations
of the frequencies w,,, w,, and w,.
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Contracted Notation

We now introduce a notational device that is often used when the Kleinman
symmetry condition is valid. We introduce the tensor

dije = x5 (1.5.20)

and for simplicity suppress the frequency arguments. The nonlinear polariza-
tion can then be written as

Pi(wn+om) =Y Y 2diji E;(@n) Ex(wn). (1.5.21)

jk (nm)
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We now assume that d;;; is symmetric in its last two indices. This assumption
is valid whenever Kleinman’s symmetry condition is valid and in addition is
valid in general for second-harmonic generation, since in this case w, and w,,
are equal. We then simplify the notation by introducing a contracted matrix dj;
according to the prescription

Jjk: 11 22 33 23,32 31,13 12,21

(1.5.22)
I 1 2 3 4 5 6

The nonlinear susceptibility tensor can then be represented as the 3 x 6 matrix

dyn dip diz dig dis dis
di=|dn dp dy du dys do |- (1.5.23)
dyy dy dy dy dis dse
If we now explicitly introduce the Kleinman symmetry condition, i.e., we

assert that the indices d;; can be freely permuted, we find that not all of the
18 elements of d;; are independent. For instance, we see that

dp=dpn =dyy=dxy (1.5.24a)
and that
d14 = d123 = d213 = d25. (1524b)

By applying this type of argument systematically, we find that d;; has only
10 independent elements when the Kleinman symmetry condition is valid; the
form of d;; under these conditions is

dy dp diz dis dis dis
dy=|die dn dy dyu dia dy |- (1.5.25)
dis dy dyz dyy diz dy

We can describe the nonlinear polarization leading to second-harmonic gen-
eration in terms of d;; by the matrix equation

[ E()? ]
E,(w)?
P, w) dy dyp diz dyy dis dis E.()?
PyQw) | =2 | dyy dy dy dy dos dr ‘
P.2w) dy dy diy dy dys d 2Ey(@)E: (@)
w
2 31 dn diy dyy dis dss 2E, (@) E.(0)
| 2Ex(0)Ey (o) |

(1.5.26)
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When the Kleinman symmetry condition is valid, we can describe the nonlinear
polarization leading to sum-frequency generation (with w3 = w; + w;) by the
equation

P (w3) dy dip diz dia dis dis
Py(w3) | =4 | dy dyn dp dy dys do
P (w3) dy1 dyp dy3 dy dss  dsg
(@) Ex(a2) ]
Ey(wl)Ey(wZ)
E E
% (0)) Ey(w2) . (1527

Ey(w1)E;(w2) + E.(01) Ey(w2)
Ex(w)E;(@2) + E;(w1) Ex(w2)
hEx(wl)Ey(wZ) + Ey(wl)Ex(wZ)_

As described above in relation to Eq. (1.3.17), the extra factor of 2 comes from
the summation over » and m in Eq. (1.3.13).

Effective Value of d (d.)

For a fixed geometry (i.e., for fixed propagation and polarization directions) it
is possible to express the nonlinear polarization giving rise to sum-frequency
generation by means of the scalar relationship

P(w3) = 4de E(w1) E(w2), (1.5.28)
and analogously for second-harmonic generation by
PQ2w) = 2dtE (w)?, (1.5.29)

where
1/2
E@) = [E@)| = [ZEj(a»z] :
J

In each case, d is obtained by evaluation of the summation ) ik in the general
equation (1.3.13).

A general prescription for calculating d.s for each of the crystal classes has
been presented by Midwinter and Warner (1965); see also Table 3.1 of Zernike
and Midwinter (1973). They show, for example, that for a negative uniaxial
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crystal of crystal class 3m the effective value of d is given by the expression
dett = d31 8In6 — dp; cos 4 sin 3¢ (1.5.30a)

under conditions (known as type I conditions) such that the two lower-frequency
waves have the same polarization, and by

dete = dy cOs? 6 cos 3¢ (1.5.30b)

under conditions (known as type II conditions) such that the polarizations are
orthogonal. In these equations, 8 is the angle between the propagation vector
and the crystalline z axis (the optic axis), and ¢ is the azimuthal angle between
the propagation vector and the xz crystalline plane.

Spatial Symmetry of the Nonlinear Medium

The form of the linear and nonlinear susceptibility tensors is constrained by
the symmetry properties of the optical medium. To see why this should be so,
let us consider a crystal for which the x and y directions are equivalent but
for which the z direction is different. By saying that the x and y directions are
equivalent, we mean that if the crystal were rotated by 90 degrees about the
z axis, the crystal structure would look identical after the rotation. The z axis
is then said to be a fourfold axis of symmetry. For such a crystal, we would
expect that the optical response would be the same for an applied optical field
polarized in either the x or the y direction, and thus, for example, that the
second-order susceptibility components x 2} and x{7), would be equal.

For any particular crystal, the form of the linear and nonlinear optical suscep-
tibilities is determined by considering the consequences of all of the symmetry
properties for that particular crystal. For this reason, it is necessary to deter-
mine what types of symmetry properties can occur in a crystalline medium. By
means of the mathematical method known as group theory, crystallographers
have found that all crystals can be classified as belonging to one of 32 possible
crystal classes depending on what is called the point group symmetry of the
crystal. The details of this classification scheme lie outside of the subject matter
of the present text.* However, by way of example, a crystal is said to belong to
point group 4 if it possesses only a fourfold axis of symmetry, to point group 3
if it possesses only a threefold axis of symmetry, and to belong to point group
3m ifit possesses a threefold axis of symmetry and in addition a plane of mirror
symmetry perpendicular to this axis.

* The reader who is interested in the details should consult Buerger (1963) or any of the other books
on group theory and crystal symmetry listed in the bibliography at the end of the present chapter.
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Influence of Spatial Symmetry on the Linear Optical Properties
of a Material Medium

As an illustration of the consequences of spatial symmetry on the optical prop-
erties of a material system, let us first consider the restrictions that this symme-
try imposes on the form of the linear susceptibility tensor x (V. The results of a
group theroretical analysis of this problem shows that five different cases are
possible depending on the symmetry properties of the material system. These
possibilities are summarized in Table 1.5.1. Each entry is labeled by the crystal
system to which the material belongs. By convention, crystals are categorized
in terms of seven possible crystal systems on the basis of the form of the crystal
lattice. (Table 1.5.2 below gives the correspondence between crystal system
and each of the 32 point groups.) For completeness, isotropic materials (such
as liquids and gases) are also included in Table 1.5.1. We see from this table
that cubic and isotropic materials are isotropic in their linear optical prop-
erties, because x ‘! is diagonal with equal diagonal components. All of the

TaBLE 1.5.1 Form of the linear susceptibility
tensor xU as determined by the symmetry
properties of the optical medium, for each of the
seven crystral classes and for isotropic materials.
Each nonvanishing element is denoted by its
cartesian indices

(xx x y Xz )
Triclinic yx oyy yz

| 2x 2y 2z |

[ xx xz |
Monoclinic 0 yy O

| zx 0 zz ]

[ xx 0]
Orthorhombic 0 yy O
0 0 zz

Tetragonal (xx 0 0]
Trigonal 0 xx O
Hexagonal 0 0 zz
Cubic w000
Isotropic 0 xx 0
°op 0 0 xx
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other crystal systems are anisotropic in their linear optical properties (in the
sense that the polarization P need not be parallel to the applied electric field E)
and consequently display the property of birefringence. Tetragonal, trigonal,
and hexagonal crystals are said to be uniaxial crystals because there is one
particular direction (the z-axis) for which the linear optical properties display
rotational symmetry. Crystals of the triclinic, monoclinic, and orthorhombic
systems are said to be biaxial.

Influence of Inversion Symmetry on the Second-Order
Nonlinear Response

One of the symmetry properties that some but not all crystals possess is inver-
sion symmetry. For a material system that is centrosymmetric (i.e., possesses
a center of inversion) the x ® nonlinear susceptibility must vanish identically.
Since 11 of the 32 crystal classes possess inversion symmetry, this rule is very
powerful, as it immediately eliminates all crystals belonging to these classes
from consideration for second-order nonlinear optical interactions.

Although the result that x® vanishes for a centrosymmetric medium is
general in nature, we shall demonstrate this fact only for the special case of
second-harmonic generation in a medium that responds instantaneously to the
applied optical field. We assume that the nonlinear polarization is given by

BPt) = x@E ), (1.5.31)
where the applied field is given by
E(t) = &cos wt. (1.5.32)

If we now change the sign of the applied electric field £(z), the sign of the
induced polarization P(¢) must also change, because we have assumed that
the medium possesses inversion symmetry. Hence the relation (1.5.31) must
be replaced by

—P@) = xP[—-E®), (1.5.33)
which shows that
—P(t) = xPE* (). (1.5.34)

By comparison of this result with Eq. (1.5.31), we see that P(¢) must equal
— P(t), which can occur only if P (t) vanishes identically. This result shows
that

x? =o0. (1.5.35)
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E@)

P@)

P@)
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applied field

N .
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linear response
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nonlinear, centrosymmetric medium
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nonlinear, noncentrosymmetric medium
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FiGurE 1.5.1 Waveforms associated with the atomic response.

This result can be understood intuitively by considering the motion of an
electron in a nonparabolic potential well. Because of the nonlinearity of the
associated restoring force, the atomic response will show significant harmonic
distortion. Part (a) of Fig. 1.5.1 shows the waveform of the incident monochro-
matic electromagnetic wave of frequency w. For the case of a medium with
linear response (part b), there is no distortion of the waveform associated with
the polarization of the medium. Part (c) shows the induced polarization for the
case of a nonlinear medium that possesses a center of symmetry and whose po-
tential energy function has the form shown in Fig. 1.4.2. Although significant
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waveform distortion is evident, only odd harmonics of the fundamental fre-
quency are present. For the case (part d) of a nonlinear, noncentrosymmetric
medium having a potential energy function of the form shown in Fig. 1.4.1,
both even and odd harmonics are present in the waveform associated with the
atomic response. Note also the qualitative difference between the waveforms
shown in parts (c) and (d). For the centrosymmetric medium (part c), the time-
averaged response is zero, whereas for the noncentrosymmetric medium (part
d) the time-average response is nonzero, because the medium responds dif-
ferently to an electric field pointing, say, in the upward direction than to one
pointing downward.*

Influence of Spatial Symmetry on the Second-Order Susceptibility

We have just seen how inversion symmetry when present requires that the
second-order vanish identically. Any additional symmetry property of a non-
linear optical medium can impose additional restrictions on the form of the
nonlinear susceptibility tensor. By explicit consideration of the symmetries
of each of the 32 crystal classes, one can determine the allowed form of the
susceptibility tensor for crystals of that class. The results of such a calculation
for the second-order nonlinear optical response, which was performed origi-
nally by Butcher (1965), are presented in Table 1.5.2. Under those conditions
(described following Eq. (1.5.21)) where the second-order susceptibility can
be described using contracted notation, the results presented in Table 1.5.2
can usefully be displayed graphically. These results, as adapted from Zernike
and Midwinter (1973), are presented in Fig. 1.5.2. Note that the influence of
Kleinman symmetry is also described in the figure. As an example of how to
use the table, the diagram for a crystal of class 3m is meant to imply that the
form of the d;; matrix is

0 0 0 0 d3y —dn
dy=|—dp dp 0 dyy O 0
dyy dy diz 0 O 0

The second-order nonlinear optical susceptibilities of a number of crystals
are summarized in Table 1.5.3.

* Parts (a) and (b) of Fig. 1.5.1 are plots of the function sin wt, part (c) is a plot of the function
sinwt — 0.25 sin 3wt, and part (d) is a plot of ~0.2 + sin wt + 0.2 cos 2wt.
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TaBLE 1.5.2 Form of the second-order susceptibility tensor for each of the 32 crystal
classes. Each element is denoted by its cartesian indices

Crystal Crystal
system class Nonvanishing tensor elements
Triclinic 1=C All elements are independent and nonzero
i=9 Each element vanishes
Monoclinic 2=0C XYZ, XZY, XXy, XYX, YXX, YYY, Y22, Y2X, YXZ, ZyZ,
zzy, zxy, zyx (twofold axis parallel to )
m = Cip XXX, XYY, XZZ, XZX, XXZ, YYZ, YZV, YXY, YYX, ZXX,
Zyy, 222, zzx, zxz (mirror plane perpendicular to $)
2/m = Cyp Each element vanishes
Orthorhombic 222 = D, XYZ,XZY, YIX, YXZ, XY, IyX
mm2 = Cyy XX, XXZ, YYZ, YZY, 2XX, 2YY, 222
mmm = Dy, Each element vanishes
Tetragonal 4=0C4 XYZ = —YXZ,XIy = —YyIX,XIX = yIYV, XXZ = yyZ,
XX = 7Yy, 222, ZXy = —ZyX
4=25, XYZ = YXZ,XZy = yIX, XIX = —YyIy, XXZ = —yyZ,
XX = —ZYY, ZXy = 2yx
422 = Dy XyZ = —yXZ,XZy = —YIX,IXy = —IyX
dmm = Cyy XZX = Y7V, XXZ = YyZ, ZXX = Zyy, 222
42m = Dy XyZ = YXZ,XZy = YZX,ZXy = ZyX
4/m = Cyp Each element vanishes
4/mmm = Dy, Each element vanishes
Cubic 432 = 0 XYz = —XZY = YIX = ~—yX7 = ZXy = —ZyX
Bm =Ty XYz = XZy = yIX = YXZ = ZXy = ZyX
23=T XyZ = yIX = IXYy,XZY = YyXZ = ZyX

m3 = Ty, m3m = Oy Each element vanishes
Trigonal 3=0C3 XXX = —XYy = —YyyZ = —yXy,XyZ = —yXZ,XZy = —yzX,
XZX = YIY, XXZ = YYZ, yyy = —yXX = —XXy = —XYX,
IXX = ZYY, 22, ZXY = —ZyX

32 =D;s XXX = —XYy = —YyX = —yXy,Xyz = —yXxZ,
XZy = —YIX,ZIXy = —IyX

3m = C3y XZX = YZV, XXZ = YYZ, ZXX = ZyYy, 222, YYY = —yXX =
—xxy = —xyx (mirror plane perpendicular to £)

3= S6,3m = D3y Each element vanishes
6

Hexagonal =Cs¢ XyZ = —YyXZ,XZy = —YyIX,XIX = YIy,XXZ = yyZ,

XX = 2yYy, 222, ZXY = —IyX

6=Cy XXX = —XYyy = —yXy = —yyX,
YYY = —YXX = —XyX = —Xxy

622 = D¢ XyZ = —yXZ,XZy = —YXZ,ZXy = —IyX

6mm = Ceg, XX = YIY,XXZ = YyZ,ZXX = 2y, 222

6m2 = Dy, YYy = —YyXX = —XXy = —XyX

6/m = Cep, Each element vanishes

6/mmm = Dg, Each element vanishes




46 1 ¢ The Nonlinear Optical Susceptibility

Biaxial crystal classes
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Uniaxial crystal classes

class 3 :XZ class 3m o—-‘oﬁyo
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’
—e o
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. . . o—— [ ] . . .

class 6 . > class 6m2 0_./0

. . . . . . . . . . . -

FiGure 1.5.2 Form of the d;; matrix for the 21 crystal classes that lack inversion
symmetry. Small dot: zero coefficient; large dot: nonzero coefficient; square: coeffi-
cient that is zero when Kleinman’s symmetry condition is valid; connected symbols:
numerically equal coefficients, but the open-symbol coefficient is opposite in sign
to the closed symbol to which it is joined. Dashed connections are valid only under

Kleinman’s symmetry conditions. (After Zernike and Midwinter, 1973.)
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Uniaxial crystal classes (Continued)

.. . classes | T
classes x /
. . m .. .
6 and 4 : : P 6md -
. an . -
o—eo o - . - 4mm o—o o

classes ’ \ ) . -
622 e e e . class4 . . .
and _- N
422 .+ e e ... —o - . . e

class 32 .—_\o class 42m . . . \
N\

Isotropic crystal classes

classes class 432
3m e e e . (all elements .
and 23 vanish)

Ficure 1.5.2 (Continued)

Number of Independent Elements of x,-(jzk) (w3, w3, w1)

We remarked above in relation to Eq. (1.5.1) that as many as 324 complex
numbers must be specified in order to describe the general interaction of three
optical waves. In practice, this number is often greatly reduced.

Because of the reality of the physical fields, only half of these numbers are
independent (see Eq. (1.5.5)). Furthermore, the intrinsic permutation symme-
try of x® (Eq. (1.5.6)) shows that there are only 81 independent parameters.
For a lossless medium, all elements of x® are real and the condition of full
permutation symmetry is valid, implying that only 27 of these numbers are
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TaBLE 1.5.3 Second-order nonlinear optical susceptibilities
for several crystals

Material Point group dy; (10~%cm/statvolt)
Quartz 32=Ds dyy = 0.96
dig = 0.02
Ba;NaNbsO 5 mm2 = Coy dy = -35
d3y = —35
dy3 = —48
LiNbO3 3m = Cz, dy =174
d3 = 14
dy3 = —98
BaTiO; 4dmm = Cyqy dys = —41
d3; = —43
dy3 = —16
KH;,POq4 42m = Dy dig = 1.2
(KDP) dig = 1.1
LilO3 6=Cg dis = —13
dyg = —10
GaAs 43m dz¢ = 406
KD,PO4 42m = Dy dig = 1.26
(KD*P) dig =1.26
CdS 6mm = Cég, dy3 = 86
d3; =90
dis = 100
Ag3AsS;3 3m = Csy dy; = 68
(proustite) d3; =36
CdGeAs; 42m = Doy dze = 1090
AgGaSe; 42m = Dyy dy6 = —81
AgSbS; 3m = Csy d3; = 30
(pyrargyrite) dyp =32
beta-BaB,0y dy) =4.6

(beta barium borate)

Notes: Values are obtained from a variety of sources. Some of the more complete
tabulations are those of S. Singh in Handbook of Lasers, Chemical Rubber Company,
Cleveland, Ohio 1971, that of A. V. Smith, available at http://www.sandia.gov/
imrl/XWEB1128/xxtal.htm, and the data sheets of Cleveland Crystals, Inc, avail-
able at http://www.clevelandcrystals.com.

To convert to the MKS system using the convention that P = d E?, multiply each
entry by 4meg/(3 x 10%) = 3.71 x 10~ to obtain d in units of C/ V2.

To convert to the MKS system using the convention that P = €9 d E?, multiply
each entry by 477(3 x 10%) = 4.189 x 10~ to obtain d in units of m/ V.

In any system of units, x® = 2d by convention.



Chapter 2

Wave-Equation Description
of Nonlinear Optical Interactions

2.1. The Wave Equation for Nonlinear Optical Media

We have seen in the last chapter how nonlinearity in the response of a material
system to an intense laser field can cause the polarization of the medium to
develop new frequency components not present in the incident radiation field.
These new frequency components of the polarization act as sources of new
frequency components of the electromagnetic field. In the present chapter,
we examine how Maxwell’s equations describe the generation of these new
components of the field, and more generally we see how the various frequency
components of the field become coupled by the nonlinear interaction.

Before developing the mathematical theory of these effects, we shall give
a simple physical picture of how these frequency components are generated.
For definiteness, we consider the case of sum-frequency generation as shown
in part (a) of Fig. 2.1.1, where the input fields are at frequency w; and w;.
Because of nonlinearities in the atomic response, each atom develops an oscil-
lating dipole moment which contains a component at frequency w; + w;. An
isolated atom would radiate at this frequency in the form of a dipole radiation
pattern, as shown symbolically in part (b) of the figure. However, any material
sample contains an enormous number N of atomic dipoles, each oscillating
with a phase that is determined by the phases of the incident fields. If the
relative phasing of these dipoles is correct, the field radiated by each dipole
will add constructively in the forward direction, leading to radiation in the
form of a well-defined beam, as illustrated in part (c) of the figure. The system

67
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FiGure 2.1.1 Sum-frequency generation.

S —

will act as a phased array of dipoles when a certain condition, known as the
phase-matching condition (see Eq. (2.2.15) in the next section), is satisfied.
Under these conditions, the electric field strength of the radiation emitted in
the forward direction will be N times larger than that due to any one atom, and

consequently the intensity will be N2 times as large.

Let us now consider the form of the wave equation for the propagation of
light through a nonlinear optical medium. We begin with Maxwell’s equations,

which we write in gaussian units in the form™

V.-D=4np,
V-B=0,
. B
VxE:—la—,
c ot
- 13D 4m-.
vxi=i9D 4
c ot c

* Throughout the text we use a tilde to denote a quantity that varies rapidly in time.

(2.1.1)

(2.1.2)

(2.1.3)

(2.1.4)
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We are primarily interested in the solution of these equations in regions of
space that contain no free charges, so that

p=0, (2.1.5)
and that contain no free currents, so that

J=o. (2.1.6)
We assume that the material is nonmagnetic, so that

B=H (2.1.7)

However, we allow the material to be nonlinear in the sense that the fields D
and E are related by

D =E + 47P, (2.1.8)

where in general the polarization vector P depends nonlinearly upon the local
value of the electric field strength E.

We now proceed to derive the optical wave equation in the usual manner.
We take the curl of the curl-E Maxwell equation (2.1.3), interchange the order
of space and time derivatives on the right-hand side of the resulting equation,
and use Egs. (2.1.4), (2.1.6), and (2.1.7) to replace V x B by (1/c)(31”)/ar),
to obtain the equation

.1 9%
We now use Eq. (2.1.8) to eliminate D from this equation, and we thereby
obtain the expression
. 192 4w 3P
VXxVxE4+ —=-—E=———.
* c? 912 c? or?

This is the most general form of the wave equation in nonlinear optics. Under
certain conditions it can be simplified. For example, by using an identity from
vector calculus, we can write the first term on the left-hand side of Eq. (2.1.9b)
as

(2.1.9b)

VxVxE=VV-E) - VE. (2.1.10)

In the linear optics of isotropic source-free media, the first term on the right-
hand side of this equation vanishes because the Maxwell equation V - D = 0
implies that V - E = 0. However, in nonlinear optics this term is generally non-
vanishing even for isotropic materials, as a consequence of the more general re-
lation (2.1.8) between D and E. Fortunately, in nonlinear optics the first term on
the right-hand side of Eq. (2.1.10) can usually be dropped for cases of interest.
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For example, if E is of the form of a transverse, infinite plane wave, V - E van-
ishes identically. More generally, the first term can often be shown to be small,
even when it does not vanish identically, especially when the slowly-varying
amplitude approximation (see Section 2.2) is valid. For the remainder of this
book, we shall usually assume that the contribution of V(V - E)in Eq. (2.1.10)
is negligible so that the wave equation can be taken to have the form

1 9% . 4 3°P

~VE+ S —E=-——. 2.1.11
+ c? 012 c? 9r? ( )
It is often convenient to split P into its linear and nonlinear parts as
P=P" + P (2.1.12)

Here P is the part of P that depends linearly on the electric field strength
E. We can similarly decompose the displacement field D into its linear and
nonlinear parts as

D =DV +47P™, (2.1.13a)
where the linear part is given by

DY = E + 47PV. (2.1.13b)
In terms of this quantity, the wave equation (2.1.11) becomes

. 132D 4 92PN
VE4+ = 2.1.14
¢t 912 2 9r2 ( )
To see why this form of the wave equation is useful, let us first consider the case
of alossless, dispersionless medium. We can then express the relation between

DO and E in terms of a real, frequency-independent dielectric tensor €V as
DV =D . E. (2.1.15a)
For the case of an isotropic material, this relation reduces to simply
D = ¢VE, (2.1.15b)

where ¢! is a scalar quantity. For this (simpler) case of an isotropic, disper-
sionless material, the wave equation (2.1.14) becomes

o DR 4x PPN
FERF TR T2
This equation has the form of a driven (i.e., inhomogeneous) wave equation;

the nonlinear response of the medium acts as a source term which appears
on the right-hand side of this equation. In the absence of this source term,

(2.1.16)
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Eq. (2.1.16) admits solutions of the form of free waves propagating with
velocity ¢/n, where n = [¢P]!/2 is the (linear) index of refraction.

For the case of a dispersive medium, we must consider each frequency com-
ponent of the field separately. We represent the electric, linear displacement,
and polarization fields as the sums of their various frequency components:

Er.n)=) E.@r0), (2.1.17a)
DO, =Y "D, (2.1.17b)
PN, =Y B, 1), (2.1.17¢)

where the summation is to be performed over positive field frequencies only,
and we represent each frequency component in terms of its complex amplitude
as

E.(r,1) = E,(r)e” " +c.c., (2.1.18a)
D (r, 1) = DV (r)e " +c.c., (2.1.18b)
PNE(r, 1) = PNE(r)e ™ 4 c.c. (2.1.18¢)

If dissipation can be neglected, the relationship between D{" and E,, can be ex-
pressed in terms of a real, frequency-dependent dielectric tensor according to

DV (r, 1) = eV (w,) - En(r, 1). (2.1.19)
When Egs. (2.1.17a) through (2.1.19) are introduced into Eq. (2.1.14), we
obtain a wave equation analogous to (2.1.16) that is valid for each frequency
component of the field:
eD(w,) 3?E,  4m 3?PN-
T T I R TR
The general case of a dissipative medium is treated by allowing the dielec-

tric tensor to be a complex quantity that relates the complex field amplitudes
according to

_VE, + (2.1.20)

Dfll)(l‘) =eD(w,) - E,(r). (2.1.21)

This expression, along with Egs. (2.1.17) and (2.1.18), can be introduced into
the wave equation (2.1.14), to obtain
Tw?

2 w% ) 4 NL
— n — — wn . n = — n . od.
VZE, () — eV (@) Enr) = =P (r) (2.1.22)
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Ficure 2.2.1 Sum-frequency generation.

2.2. The Coupled-Wave Equations for Sum-Frequency Generation

We next study how the nonlinear optical wave equation that we derived in the
previous section can be used to describe specific nonlinear optical interactions.
In particular, we consider sum-frequency generation in a lossless nonlinear
optical medium involving collimated, monochromatic, continuous-wave input
beams. We assume the configuration shown in Fig. 2.2.1, where the applied
waves fall onto the nonlinear medium at normal incidence. For simplicity, we
ignore double refraction effects. The treatment given here can be generalized
straightforwardly to include nonnormal incidence and double refraction.®

The wave equation in the form (2.1.20) must hold for each frequency compo-
nent of the field and in particular for the sum-frequency component at frequency
ws. In the absence of a nonlinear source term, the solution to this equation for
a plane wave at frequency w3 propagating in the 4z direction is

Es(z,1) = Az’ 0790 4 cc., (2.2.1)

where]L
niws

k3 = - y niy = [6(1)(603)]1/2, (222)

and where the amplitude of the wave Aj; is a constant. We expect on physical
grounds that, when the nonlinear source term is not too large, the solution to
Eq. (2.1.20) will still be of the form of Eq. (2.2.1), except that A3 will become
a slowly varying function of z. We hence adopt Eq. (2.2.1) with A3 taken to be
a function of z as the form of the trial solution to the wave equation (2.1.20)
in the presence of the nonlinear source term.

We represent the nonlinear source term appearing in Eq. (2.1.20) as

P3(z,1) = Pye ' +c.c., (2.2.3)

* See, for example, Shen (1984), Chapter 6.
! For convenience, we are working in the scalar field approximation; n3 represents the refractive
index appropriate to the state of polarization of the w3 wave.
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where according to Eq. (1.5.28)

P; = 4d.E E,. 2.2.4)
If we represent the applied fields as
Ei(z,t) = Eie7"" +c.c., i=1,2, (2.2.5)
with
E; = Aje'™?, i=1,2, (2.2.6)

the amplitude of the nonlinear polarization can be written as
Py = 4deffA1Azei(k1+kz)z = p3ei(k|+k2)z‘ (2.2.7)

We now substitute Egs. (2.2.1), (2.2.3), and (2.2.7) into the wave equation
(2.1.20). Since the fields depend only on the longitudinal coordinate z, we can
replace V? by d? /dzz. We then obtain

[d2A3 eD(w3)w3 A,

7 +2i k3 iz — kA3 + = ]ei(k‘z_“’J’) +c.c.
(2.2.8)

_ —]6Ndeffw§AlAzei[(k1+k2)z—w3t] +ec
—Qa .C.

Since k? = €'V (w3)w?/c?, the third and fourth terms on the left-hand side of
this expression cancel. Note that we can drop the complex conjugate terms
from each side and still maintain the equality. We can then cancel the factor
exp(—iwst) on each side and write the resulting equation as

d?A; +2iks dA; _ 16ﬂdeffa)3A Apel ke

dz? dz c?

It is usually permissible to neglect the first term on the left-hand side of this
equation on the grounds that it is very much smaller than the second. This
approximation is known as the slowly-varying amplitude approximation and

is valid whenever

2.2.9)

d?*A; dAs
dz? ¥ dz
This condition requires that the fractional change in A; in a distance of the
order of an optical wavelength must be much smaller than unity. When this

approximation is made, Eq. (2.2.9) becomes

dA; 87Tldeffw3A Ayel Bk
dz k3c?

2miws .
p3€l Akz,

(2.2.10)

(2.2.11)

ni3c
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where we have introduced the quantity
Ak =ky + ky — k3, (2.2.12)

which is called the wavevector (or momentum) mismatch. Equation (2.2.11) is
known as a coupled-amplitude equation, because it shows how the amplitude
of the w; wave varies as a consequence of its coupling to the w; and w, waves.
In general, the spatial variation of the w; and w, waves must also be taken
into consideration, and we can derive analogous equations for the w; and w,
fields by repeating the derivation given above for each of these frequencies.
We hence find two additional coupled-amplitude equations given by

dAl 87”dffw1A A* —iAkz

— = 2.2.13
dZ k1C2 ( )
and
dA, 87Tldeffw2 —iAk
— = ——=A; A* iAkz 2.2.14
dz sz2 ( )

Note that, in writing these equations in the forms shown, we have assumed
that the medium is lossless. For a lossless medium, no explicit loss terms
need be included in these equations, and furthermore we can make use of
the condition of full permutation symmetry (Eq. (1.5.8)) to conclude that the
coupling coefficient has the same value des in each equation.

Phase-Matching Considerations

For simplicity, let us first assume that the amplitudes A; and A, of the input
fields can be taken as constants on the right-hand side of Eq. (2.2.11). This
assumption is valid whenever the conversion of the input fields into the sum-
frequency field is not too large. We note that, for the special case

Ak =0, (2.2.15)

the amplitude A3 of the sum-frequency wave increases linearly with z, and
consequently that its intensity increases quadratically with z. The condition
(2.2.15) is known as the condition of perfect phase matching. When this con-
dition is fulfilled, the generated wave maintains a fixed phase relation with
respect to the nonlinear polarization and is able to extract energy most effi-
ciently from the incident waves. From a microscopic point of view, when the
condition (2.2.15) is fulfilled the individual atomic dipoles that constitute the
material system are properly phased so that the field emitted by each dipole adds
coherently in the forward direction. The total power radiated by the ensemble of
atomic dipoles thus scales as the square of the number of atoms that participate.
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When the condition (2.2.15) is not satisfied, the intensity of the emitted
radiation is smaller than for the case of Ak = 0. The amplitude of the sum-
frequency (ws) field at the exit plane of the nonlinear medium is given in this
case by integrating Eq. (2.2.11) from z = 0 to z = L, yielding

87Tideffw%A|A2 /L eiAkde 3 87l'idw§A1A2 (eiAkL _ 1)
0

Az(L) =
3(L) ksc? kzc? iAk

(2.2.16)

The intensity of the w3 wave is given by the magnitude of the time-averaged
Poynting vector, which for our definition of field amplitude is given by
n;c
2

I = =A%, i=1,23. (2.2.17)

We thus obtain

iAKL _ 1|2

Ak

e

_ 32mdZwi| A1 1P| As)Pns
k3c3

The squared modulus that appears in this equation can be expressed as

3 (2.2.18)

P AL _ 1|2 _ eIOKL 1\ [ emiAKL _ _ 2L2(1 —cos AkL)
Ak AkL AKL (AkL)?
i (2.2.19)
in®(AkL/2 o
- LZ%(TLﬁ;T) = L%sinc3(AkL/2).

Finally, our expression for I3 can be written in terms of the intensities of the
incident fields by using Eq. (2.2.17) to express | A; |? in terms of the intensities,
yielding the result

L 512n%d2% 11 I

3= L*sinc?(AkL/2), (2.2.20)

n1n2n3k§c
where A3 = 27 c/w;3 is the vacuum wavelength of the w3 wave. Note that the
effect of wavevector mismatch is included entirely in the factor sinc>(AkL/2).
This factor, which is known as the phase mismatch factor, is plotted in Fig. 2.2.2.

It should be noted that the efficiency of the three-wave mixing process
decreases as |Ak|L increases, with some oscillations occurring. The reason
for this behavior is that if L is greater than approximately 1/Ak, the output
wave can get out of phase with its driving polarization, and power can flow
from the w3 wave back into the w; and w, waves (see Eq. (2.2.11)). For this
reason, one sometimes defines

L.=2/Ak (2.2.21)
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FiGURE 2.2.2 Effects of wavevector mismatch on the efficiency of sum-frequency
generation.

to be the coherent buildup length of the interaction, so that the phase mismatch
factor in Eq. (2.2.20) can be written as

sinc?(L/L.). (2.2.22)

2.3. The Manley-Rowe Relations

Let us now consider, from a general point of view, the mutual interaction of
three optical waves propagating through a lossless nonlinear optical medium,
as illustrated in Fig. 2.3.1.

We have just derived the coupled-amplitude equations (Egs. (2.2.11) through
(2.2.14)) that describes the spatial variation of the amplitude of each wave. Let
us now consider the spatial variation of the intensity associated with each of
these waves. Since
i€ A, AT, 2.3.1)

I =
! 2m

@ >

(02 —_—
0)3 >

Ficure 2.3.1 Optical waves of frequencies w;, w;, and w3 = w; + w; interact in a
lossless nonlinear optical medium.
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the variation of the intensity is described by
dl,‘ n;c dA, dA?
— = —Al—+ A — ). 232
dz 2n<'dz+’dz) 232)

Through use of this result and Eq. (2.2.13), we find that the spatial variation
of the intensity of the wave at frequency w; is given by

=< ——(iA’l‘A3A§e_iAkz +c.c.)

= ddow) (1 A3 ATAZe 2% L c.c.)

or by
dll * A% —IAkz
ol —8defrw1 Im(A3 AT Ade ). (2.3.3a)
Z
We similarly find that the spatial variation of the intensities of the waves at

frequencies w, and w3 is given by

dr .

d_2 = —8dsrwy Im(A3 A} Aje ™' 25%), (2.3.3b)
Z

dI :

gﬁ = —8d.qw3 Im(A3 A Ayet2k?)
Z

_ (2.3.3¢)
= 8d.w3 Im(A3 AT Ase™ 4k,

We see that the sign of d1; /dz is the same as that of d I, /dz but is opposite to
that of dI3/dz. We also see that the direction of energy flow depends on the
relative phases of the three interacting fields.

The set of equations (2.3.3a), (2.3.3b), and (2.3.3c) shows that the total power
flow is conserved, as expected for propagation through a lossless medium. To
demonstrate this fact, we define the total intensity as

I =L+ 5L+ L. 2.3.4)
We then find that the spatial variation of the total intensity is given by
di _db b dis
dz dz dz dz
= —8dei(@1 + w2 — w3)Im(A; ATA3e ) =0,
where we have made use of Egs. (2.3.3a), (2.3.3b), and (2.3.3c) and where the

last equality follows from the fact that w3 = w; + w,.
The set of equations (2.3.3a), (2.3.3b), and (2.3.3c) also implies that

d [ 1 d (D d [z
a2y 4B, 236
dz(col) dZ<wz) d2<w3) 230

(2.3.5)
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as can be verified by inspection. These equalities are known as the Manley—
Rowe relations (Manley and Rowe, 1959). Since the energy of a photon of
frequency wj; is hw;, the quantity I; /w; that appears in these relations is pro-
portional to the intensity of the wave measured in photons per unit area per
unit time. The Manley—Rowe relations can alternatively be expressed as

d (I I d (1 I d (1 I
—(i+i>=a “(2+2) =0 —(i—i)=0 (2.3.7)
dz\w, w3 dz\w; w3 dz\w, w;

These equations can be formally integrated to obtain the three conserved quan-
tities (conserved in the sense that they are spatially invariant) M,, M, and M3,
which are given by
=2 B oy B B g
w) w3 w1 w3 w1 Wy
These relations tell us that the rate at which photons at frequency w; are
created is equal to the rate at which photons at frequency w, are created and is
equal to the rate at which photons at frequency ws are destroyed. This result can
be understood intuitively by means of the energy level description of a three-
wave mixing process, which is shown in Figure 2.3.2. This diagram shows that,
for a lossless medium, the creation of an w; photon must be accompanied by
the creation of an w, photon and the annihilation of an w3 photon. It seems at
first sight surprising that the Manley—Rowe relations should be consistent with
this quantum-mechanical interpretation, when our derivation of these relations
appears to be entirely classical. Note, however, that our derivation implicitly
assumes that the nonlinear susceptibility possesses full permutation symmetry
in that we have taken the coupling constant d.s to have the same value in
each of the coupled-amplitude equations (2.2.11), (2.2.13), and (2.2.14). We
remarked earlier (following Eq. (1.5.9)) that in a sense the condition of full
permutation symmetry is a consequence of the laws of quantum mechanics.

FiGure 2.3.2  Photon description of the interaction of three optical waves.
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(a) (b)

Yy Y
Ficure 3.1.1 Third-harmonic generation described in terms of virtual levels (a) and
with real atomic levels indicated (b).

coupling between the radiation and the atom is particularly strong and the
nonlinear optical susceptibility becomes large.

Three possible strategies for enhancing the efficiency of third-harmonic
generation through the technique of resonance enhancement are illustrated in
Fig. 3.1.2. In part (a), the one-photon transition is nearly resonant, in part (b)
the two-photon transition is nearly resonant, and in part (c) the three-photon
transition is nearly resonant. The formulas derived later in this chapter demon-
strate that all three procedures are equally effective at increasing the value of
the third-order nonlinear susceptibility. However, the method shown in part
(b) is usually the preferred way in which to generate the third-harmonic field
with high efficiency, for the following reason: For the case of a one-photon
resonance (part a), the incident field experiences linear absorption and is rapidly
attenuated as it propagates through the medium. Similarly, for the case of the
three-photon resonance (part c), the generated field experiences linear absorp-
tion. However, for the case of a two-photon resonance (part b), there is no
linear absorption to limit the efficiency of the process.

@ (b) _ ©

Y 4 Y

FIGURE 3.1.2 Three strategies for enhancing the process of third-harmonic
generation.
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3.2. Schrodinger Equation Calculation of the Nonlinear
Optical Susceptibility

In this section, we present a derivation of the nonlinear optical susceptibility
based on quantum-mechanical perturbation theory of the atomic wave func-
tion. The expressions that we derive using this formalism can be used to make
accurate predictions of the nonresonant response of atomic and molecular sys-
tems. Relaxation processes, which are important for the case of near-resonant
excitation, cannot be adequately described by this formalism. Relaxation pro-
cesses are discussed later in this chapter in connection with the density matrix
formulation of the theory of the nonlinear optical susceptibility. Even though
the density matrix formalism provides results that are more generally valid,
the calculation of the nonlinear susceptibility is much more complicated when
performed using this method. For this reason, we first present a calculation of
the nonlinear susceptibility based on the properties of the atomic wavefunc-
tion, since this method is somewhat simpler and for this reason gives a clearer
picture of the underlying physics of the nonlinear interaction.

One of the fundamental assumption of quantum mechanics is that all of
the properties of the atomic system can be described in terms of the atomic
wavefunction ¥ (r, ), which is the solution to the time-dependent Schrodinger
equation

oy

ih— = H. 3.2.1
i 4 ( )

Here H is the Hamiltonian operator
H=Hy+ V@), (3.2.2)

which is written as the sum of the Hamiltonian H for a free atom and an
interaction Hamiltonian, V(t), which describes the interaction of the atom
with the electromagnetic field. We usually take the interaction Hamiltonian to
be of the form

V)= —p-E@), (3.2.3)

where 1 = —et is the electric dipole moment operator and —e is the charge of
the electron, and where we assume that E(¢) can be represented as a discrete
sum of (positive and negative) frequency components as

E(t) =) E(wp)e ", (3.2.4)
p



132 3 ¢ Quantum-Mechanical Theory of Nonlinear Optical Susceptibility

Energy Eigenstates

For the case in which no external field is applied to the atom, the Hamiltonian A
is simply equal to H, and Schrodinger’s equation (3.2.1) possesses solutions in
the form of energy eigenstates. These states are also known as stationary states,
because the time of evolution of these states is given by a simple exponential
phase factor. These states have the form

Y (r, 1) = up(r)e @, (3.2.5a)

By substituting this form into the Schrodinger equation (3.2.1), we find that
the spatially varying part of the wavefunction u, (r) must satisfy the eigenvalue
equation (known as the time-independent Schrodinger equation)

Hou,(r) = E,u,(r), (3.2.5b)

where E, = hw,. For future convenience, we assume that these solutions
are chosen in such a manner that they constitute a complete, orthonormal set
satisfying the condition

/ U und’r = 8. (3.2.6)

Perturbation Solution to Schrédinger’s Equation

For the general case in which the atom is exposed to an electromagnetic field,
Schrodinger’s equation (3.2.1) usually cannot be solved exactly. In such cases,
it is often adequate to solve Schrodinger’s equation through the use of per-
turbation theory. In order to solve Eq. (3.2.1) systematically in terms of a
perturbation expansion, we replace the Hamiltonian (3.2.2) by

H=H,+ V@), (3.2.7)

where A is a continuously varying parameter ranging from zero to unity that
characterizes the strength of the interaction; the value A = 1 corresponds to the
actual physical situation. We now seek a solution to Schrodinger’s equation in
the form of a power series in A:

v, ) = Q@+ a0+ 22y Pw, 0+, (3.28)

By requiring that the solution be of this form for any value of A, we assure that
¥ ™) will be that part of the solution which is of order N in the interaction
energy V. We now introduce Eq. (3.2.8) into Eq. (3.2.1) and require that all
terms proportional to AY) satisfy the equality separately. We thereby obtain
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the set of equations

@
in ‘gt = Hoy?, (3.2.92)
ay™ R
ih =Hyy™M 4+ VyWD  N=1,23.... (329)

at
Equation (3.2.9a) is simply Schrodinger’s equation for the atom in the absence
of its interaction with the applied field; we assume for definiteness that initially
the atom is in state g (typically the ground state) so that the solution to this
equation is

YO, 1) = ug(rye  Eet/t, (3.2.10)

The remaining equations in the perturbation expansion (Eq. (3.2.9b)) are solved
by making use of the fact that the energy eigenfunctions for the free atom
constitute a complete set of basis functions, in terms of which any function
can be expanded. In particular, we represent the Nth-order contribution to the
wavefunction ¥ ™ (r, ¢) as the sum

y M=o ure . (3.2.11)
]
Here a,(N) (t) gives the probability amplitude that, to Nth order in the perturba-
tion, the atom is in energy eigenstate / at time ¢. If Eq. (3.2.11) is substituted
into Eq. (3.2.9b), we find that the probability amplitudes obey the system of
equations

in Y aMume ™ =3 " a Ve, (32.12)
1 1

where the dot denotes a total time derivative. This equation relates all of the
probability amplitudes of order N to all of the amplitudes of order N — 1. To
simplify this equation, we multiply each side from the left by u, and we inte-
grate the resulting equation over all space. Then through use of the orthonor-
mality condition (3.2.6), we obtain the equation

al = (n) 'Y a" T Vetont, (3.2.13)
1

where w,,; = w,, — w; and where we have introduced the matrix elements of
the perturbing Hamiltonian, which are defined by

Vit = (m| V) = /u;';, Vu, d>r. (3.2.14)

The form of Eq. (3.2.13) demonstrates the usefulness of the perturbation tech-
nique; once the probability amplitudes of order N — 1 are determined, the
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amplitudes of the next higher order (N) can be obtained by straightforward
time integration. In particular, we find that

t
al () = (n"' Y / dt' Vo (tha M D (@)efom”  (3.2.15)
] J—o0

We shall eventually be interested in determining the linear, second-order,
and third-order optical susceptibilities. To do so, we shall require explicit
expressions for the probability amplitudes up to third order in the perturbation
expansion. We now determine the form of these amplitudes.

To determine the first-order amplitudes a'(z), we set a" in Eq. (3.2.15)
equal to &;, (corresponding to an atom known to be in state g in zeroth order)
and, through use of Egs. (3.2.3) and (3.2.4), replace V,,;(¢') by — Zp Kot
E(w,)exp(—iw,t'), where p,,, = [ u}, fru;d>r is known as the electric dipole
transition moment. We next evaluate the integral appearing in Eq. (3.2.15) and
assume that the contribution from the lower limit of integration vanishes; we
thereby find that

allr) = 1 Z Mmg—w (3.2.16)
h ~ Wmg — Wp
We next determine the second-order correction to the probability amplitude
by using Eq. (3.2.15) once again, but with N set equal to 2. We introduce
Eq. (3.2.16) for a? into the right-hand side of this equation and perform the
integration to find that

1 (K - E(wp)l [ - E(wp)]
@y = — nm 9 mg P i(wng=wp=wg)t (3717
R hz%:z(wng_wp_wq)(wmg_wp)e ( )

m

Analogously, through an additional use of Eq. (3.2.15), we find that the third-
order correction to the probability amplitude is given by

1 (1evn - E@) ][ - E(0g) [ g - E(w)p)]
By = 8
@ (1) n’ ; mZn (Wyg — wp — Wy ~ W) (Wpg — Wp — Wg)(Wmg — @Wp)

% ei(w,,g—w,,—wq—wr)t. (3218)

Linear Susceptibility

Let us now use the results just obtained to determine the linear optical properties
of a material system. The expectation value of the electric dipole moment is
given by

P = (Vlply), (3.2.19)
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We find that the lowest-order contribution to (p) (i.e., the contribution linear
in the applied field amplitude) is given by

) = (w11 D) + (v Olaly @), (3.2.20)

where ¥ is given by Eq. (3.2.10) and v ! is given by Egs. (3.2.11) and
(3.2.16). By substituting these forms into Eq. (3.2.20) we find that

p") ZZ(”gm[umg B@)] _io,; , g - B@)) g )
P w;kng - wl’
(3.2.21)

In writing Eq. (3.2.21) in the form shown, we have formally allowed the
possibility that the transition frequency w,,, is a complex quantity. We have
done this because a crude way of incorporating damping phenomena into the
theory is to take w, to be the complex quantity @y, = w9, —i Ty /2, where ),
is the (real) transition frequency and I, is the population decay rate of the upper
level m. This procedure is not totally acceptable, because it cannot describe the
cascade of population among the excited states nor can it describe dephasing
processes that are not accompanied by the transfer of population. Nonetheless,
for the remainder of the present section, we shall allow the transition frequency
to be a complex quantity in order to provide an indication of how damping
effects could be incorporated into the present theory.

Equation (3.2.21) is written as a summation over all positive and negative
field frequencies w,. This result is easier to interpret if we formally replace
wp by —w,, in the second term, in which case the expression becomes

(l) Z Z<“gm[“mg E(w))] [“gm 'E(w”)]umg)e‘iwpt.
Wy, + @p
(3.2.22)

We next use this result to calculate the form of the linear susceptibilty. We
take the linear polarization to be P()' = N (D), where N is the number density
of atoms. We next express the polarization in terms of its complex amplitude as
PO = PO P“)(w,,)exp(—za)pt) Finally, we introduce the linear susceptibility
defined through the relation P )(wp) = Z X,(”E (wp). We thereby find that

N M i Lom L
(1) gmtmg gmMmg
b = — E + . 3.2.23
Xij (@p) h ~ (wmg —wp  wh,+ wp> ( )
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(a) ()

g -3I---m

Figure 3.2.1 The resonant (a) and antiresonant (b) contributions to the linear sus-
ceptibility of Eq. (3.2.23).

The first and second terms in Eq. (3.2.23) can be interpreted as the resonant
and antiresonant contributions to the susceptibility, as illustrated in Fig. 3.2.1.
In this figure we have indicated where level m would have to be located in
order for the corresponding term to become resonant. Note that if g denotes
the ground state, it is impossible for the second term to become resonant, which
is why it is called the antiresonant contribution.

Second-Order Susceptibility

The expression for the second-order susceptibility is derived in a manner anal-
ogous to that used for the linear susceptibility. The second-order contribution
(i.e., the contribution second order in V) to the induced dipole moment per
atom is given by

( (2)) (¢(0)|N|‘/f(2)) (w(l)|ﬂ|‘/f(l)> +<‘/f(2)|ﬁl¢(0)), (3.2.24)

where ¥ © is given by Eq. (3.2.10), and ¥V and ¢® are given by Egs.
(3.2.11), (3.2.16), and (3.2.17). We find that (p‘®) is given explicitly by

(2) hzZZ(”’gn[lJ'nm E(wq)][l"‘mg E(wp)] el @ptopt

pq mn (w”g - a)q)(a)mg w!’)

+ [l‘l’ng ’ E(a)t])]*l"‘nm [IJ‘mg ) E(a)fi)] e-i(w"_w")t

(3.2.25)
(Why — Wg)(Wmg — p)

(g - E(@))* [ - E(@p)]* g ei(w,,+wq)f>.

(@), — Wg) (@}, — g — ©g)

As in the case of the linear susceptibility, this equation can be rendered more
transparent by replacing w, by —w, in the second term and by replacing w,
by —w, and w, by —w, in the third term; these substitutions are permis-
sible because the expression is to be summed over frequencies w, and w,.
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We thereby obtain the result

(2) hZZz(l—Lgn[lJ’nm E(a)q)][/v"mg E(wp)]

pqg mn (w"g wp — wq)(wmg - wl’)

[I"'gn . E(wq)]l“"nm [”’mg : E(wl’)]
(a),*;g + @y ) (Wmg — wp)
[I“"gﬂ ) E(w‘i)][l“""m ) E(w”)]“mg>e—i(wp+wqt)
(0}, + W) (W, + 0y + @) '

(3.2.26)

We next take the second-order polarization to be P® = N (p®) and repre-
sent it in terms of its frequency components as P?® = 3~ P®(w,)exp(—iw,t).
We also introduce the standard definition of the second-order susceptibility (see
also Eq. (1.3.13)):

P =33 xS @y + 0y, 04, 0p) Ej(04) Ex (@)
ik (pg)
and find that the second-order susceptibility is given by

i)k
) /’Lgnunm:u‘mg
x 2w, + 0y, 0, ©,) = @,E(
ijk NP 47 TPS T 2 et \ (Wng — ©p ~ 0g)(Wmg — ®p)

Mé’nlu“ilm“]:ng
(a);g + wy)(Wmg — wp)
N g M Mg )
(@}, + wg) (@}, +@p + @g) )

(3.2.27)

mg
In this expression, the symbol &, denotes the intrinsic permutation operator.
This operator tells us to average the expression that follows it over both per-
mutations of the frequencies w, and w, of the applied fields. The cartesian
indices j and k are to be permuted simultaneously. We introduce the intrinsic
permutation operator into Eq. (3.2.27) to ensure that the resulting expression
obeys the condition of intrinsic permutation symmetry, as described in the dis-
cussion of Egs. (1.4.52) and (1.5.6). The nature of the expression (3.2.27) for
the second-order susceptibility can be understood in terms of the energy level
diagrams shown in Fig. 3.2.2, which show where the levels m and n would
have to be located in order for each term in the expression to become resonant.

The quantum-mechanical expression for the second-order susceptibility ac-
tually comprises six terms; through use of the intrinsic permutation operator
Z,, we have been able to express the susceptibility in the form (3.2.27),
in which only three terms are displayed explicitly. For the case of highly
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FiGURE 3.2.2 Resonant structure of the three terms of the second-order susceptibility
of Eq. (3.2.27).

nonresonant excitation, such that the resonance frequencies wy,, and w,, can
be taken to be real quantities, the expression for x ® can be simplified still
further. In particular, under such circumstances Eq. (3.2.27) can be expressed
as

L Wi g

3.2.28
(a)ng - a)a)(wmg - wp) ( )

N

2

Xi('k)(wf”wQ’wP) = ;IE'@FZ
mn

where w, = w, + w,. Here we have introduced the full permutation operator,
Pr defined such that the expression that follows it is to be summed over all
permutations of the frequencies w,, w,, and —w,, that is, over all input and
output frequencies. The cartesian indices are to be permuted along with the
frequencies. The final result is then to be divided by the number of permutations
of the input frequencies. The equivalence of Eqs. (3.2.27) and (3.2.28) can be
verified by explicitly expanding the right-hand side of each equation into all
six terms. The six permutations denoted by the operator & are

(—wg, g, wp) - (—w,, Wp, wq), (Cl)q, —Wg a)p)a (a)q’ Wp, —Wg),
(C()p, —Wg, wq), (a)p, Wy, —Wg).

Since we can express the nonlinear susceptibility in the form of Eq. (3.2.28), we
have proven the statement made in Section 1.5 that the nonlinear susceptibility
of a lossless medium possesses full permutation symmetry.

Third-Order Susceptibility

We now calculate the third-order susceptibility. The dipole moment per atom,
correct to third order in perturbation theory, is given by

(6) = (v @1y @) + (v V1l @) + (v @1y ) + (D 1aly @)
(3.2.29)
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